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Abstract

The generally accepted methods of predicting l_eat-

transfer coefficients often give values which are in poor

agreement with the measured coefficients for single

phase hydrogen flowing through straight symmetrically

heated circular tubes for the extreme conditions en-

countered in the NERVA or Phoebus-2 nozzle. A

thorough study of the 4600 experimental heat-transfer

coefficients for hydrogen flowing through straight tubes

is made which results in an equation which predicts co-

efficients with acceptable accuracy over a wide range of

conditions. The prediction equation for straight tubes is

modified to predict coefficients for hydrogen on both the

"swept concave surface" and the "upswept convex sur-

face" of curved symmetrically heated circular tubes.

Without further modification the equation predicts heat-

transfer coefficients which are in good agreement with

values measured in asymmetrically heated noncircular

channels simulating the throat region of the NERVA and

Phoebus-2 nozzles. These tests were run under the ac-

tual anticipated heat flux, pressure, temperature, and

flow rate. The prediction equations are recommended

for use in predicting heat-transfer coefficients in the

cooling passages of the actual NERVA and Phoebus-2

rocket nozzles.

Introduction

The extreme conditions encountered in regenera-

tively cooled nuclear rocket nozzles produce severe

heat-transfer problems in the coolant passages. An ef-

fective method of predicting heat-transfer coefficients in

the cooling passages is essential to the optimization of

any nozzle design. Of particular concern is the high

heat flux throat region where fluxes of 20 Btu/(sec)(ln. 2)

and higher are reached.

A number of investigations have been conducted with

single phase hydrogen flowing turbulently through tubes.

The range of conditions in these investigations have ap-

proximated those encountered in the cooling passages of

a nuclear rocket nozzle. These studies resulted in sev-

eral correlation equations each of which was limited to a

particular range of conditions. A recent study found

that a single equation can be used to predict heat-

transfer coefficients over a much greater range of con-

ditions than was previously possible. (1)

In this presentation the most recent straight tube

prediction equation(1) is first compared with the two

prediction equations most widely used in rocket nozzle

design. (10,12,13) The straight tube prediction equa-

tion(1) is then modified to include the effects of curva-

ture and compared to some existing experimental data

for single curved tubes. Finally the suggested applica-

tion of these prediction equations to the cooling passages
of a nuclear rocket nozzle is discussed.

Heat-Transfer Coefficients in Straight Tubes

A study of all available turbulent single phase hydro-

gen heat-transfer data has been reported in Ref. 1.

These 4622 data points resulted from 10 investigations

using symmetrically heated straight circular tubes with

a straight unheated approach length. (2 to 11) The com-

plete range of experimental conditions covered by the

investigations is shown in table I. The study reported in

Ref. 1 gave as a result the correlation equation

n 0 8__0 4(Tw/exp (0 1.59_Nu b = 0. 023 r_e b" _*b" - .57 - x"x_]\rb]
(1)

which was tested for the range of inlet pressure and in-

let temperature shown in Fig. 1. The use of the

temperature-entropy diagram is a convenient method of

showing the location of measured inlet pressure and tem-

perature in relation to the saturation lines and critical

pressure Pc and critical temperature T c.

The hydrogen data are separated into regions 1 and

2 as shown in Fig. 1. These regions are the result of

the study of the effect of inlet temperature Ti, inlet

pressure Pi, and the transposed critical temperature

(the temperature at which the specific heat at constant

pressure reaches a maximum) T*. In region 1, 87 per-

cent of the 3674 heat-transfer coefficients predicted by

equation (1) deviates less than _:25 percent from the

measured values. Region 2 is defined by 45 ° R < T i <T*

and Pc < Pi < 530 psia and is often referred to as the

near-critical region. In region 2, 40 percent of the 948

predicted heat-transfer coefficients deviates less than

• 25 percent from the measured valves. At present there

is considerable doubt about the transport properties in

this region.

There are two equations commonly used in pre-

dicting heat-transfer coefficients in the cooling passages

of a regeneratively cooled nuclear rocket nozzie. One

of these is the Hess and Kunz equation(12)

Nuf = 0. 0208 Re_' _rf 1 + 0. 01457 (2)

The other one is the modified Hess and Kunz equa-
tion(10 and 13)

= _'rf" + 0. 01457 (3)
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The quantity C L varies nonlinearly as follows:

Coolant C L
temperature,

oR

50 2.0

55 1.73

60 1.48
65 1.26

70 1.07

75 .93
80 .87
85 .85

For coolant temperatures above 85 ° R C L is constant
at 0.85.

Equations (1) to (3) are used to predict heat-

transfer coefficients which can be compared to the most
recent experimental data for the range of conditions en-

countered in nuclear rocket nozzles. The ratio of these

predicted coefficients to the measured values are shown

as a function of the ratio of wall to fluid bulk tempera-

tures in Fig. 2. Figure 2 shows that 94 percent of the

heat-transfer coefficients predicted using equation (1)

deviated less than ±20 percent from the measured values

compared to 42 percent using equation (2) and 66 percent

using equation (3).

Heat-Transfer Coefficients in Curved Tubes

Heat transfer measurements have been reported for

both the concave or "swept" side and the convex or

"unswept" side of curved circular tubes. (14) Equa-

tion (1) was first tried without any change from the form

that correlated straight tube data to predict heat-
transfer coefficients for both the concave and convex

sides of the symmetrically heated test sections. The

ratio of the heat-transfer coefficient predicted by equa-

tion (1) to the measured coefficient is shown as a func-

tion of temperature ratio in Fig. 3. As might be expec-

ted, the predicted heat-transfer coefficient is lower than

the measured value on the concave side and higher than
the measured value on the convex side. The calculated

heat-transfer coefficient is as small as one-half the ex-

perimental value on the concave side and as large as al-

most twice the experimental value on the convex side.

These effects of curvature on the heat-transfer coeffi-
cients have been noted elsewhere. (15,16)

Equation (1) is modified in this paper with the It_

correction factor for curvature(17) to give the equation

NUb = 0.023 Re_ "8-1_rb0"4[Tw__'b _ exp -(0. 57- _'_'_/1"59_

x e b (4)

for the concave side.

The convex side of a curved tube is rarely given any

consideration, but in this study the reciprocal of the Itg

factor was used to modify equation (1) to give

" r _-0.05

for the convex side.

The results of using equations (4) and (5) to predict
the' heat-transfer coefficients on the concave and convex

sides of a tube are shown in Figs. 4(a) and (b), respec-

tively. The experimental data in Fig. 4 is the same data

used in Fig. 3. Approximately 90 percent of the pre-
dicted heat-transfer coefficients deviated less than

-_20 percent from the experimental values.

It appears that the It_ correction does improve the

correlation and that equations (4) and (5) will predict
heat-transfer coefficients on the concave and convex

sides of curved tubes, respectively.

Thus far, both the straight and curved tube data

were for symmetrically heated circular tubes. In a

rocket nozzle the cooling passages are noncircular and

they heated from only one side. Some data are available

for asymmetrically heated circular and noncircular pas-

sages curved to simulate the throat and high flux region
of the NERVA and Phoebus-2 nozzles. (10) Heat-transfer

coefficients predicted by equation (4) were compared to

these experimental values for conditions as near as pos-
sible to those for the actual nozzle.

Figure 5 shows the ratio of the heat-transfer coeffi-
cients calculated by equation (4) to the experimental co-
efficients as a function of the dimensionless distance

from the entrances. In Fig. 5(a) the ratio of coefficients

are for the NERVA contour and in Fig. 5(b) the ratio is

for the Phoebus-2 contour. The agreement between pre-

dicted and measured heat-transfer coefficients is con-

siderably better for the Phoebus-2 configuration than for

the NERVA configuration. The ratio of coefficients

seems to vary more erratically for NERVA data than for
the Phoebus-2 data.

One possible explanation for this behavior might be

that for the NERVA contour. The calculated temperature

drop through the wall is up to ten times the temperature

difference between the inside wall and the hydrogen. For
this condition an error of 2 percent in the measured out-

side wall temperature can result in a 30 percent error in
the heat-transfer coefficient. A 2 percent error in out-

side wall temperature will result in only 10 percent in

the Phoebus-2 contour where wall temperature drop is
never more than three times the temperature difference

between the inside wall and the hydrogen. Another ex-

planation might be due to the difference in curvature of
the two cdntours.

An important use of the heat-transfer coefficient is
in the prediction of wall temperatures. Equation (4) is
used to predict the inside wall temperatures shown in
Fig. 6. The experimental wall temperatures and the

wall temperatures predicted by a modified Hess and

Kunz equation are taken directly from Ref. 10. Only the



tworunsshown in Figs. 6(a) and (b) were shown in
Ref. 10 and, therefore, are the only ones shown in this

paper. As shown both equations usually predict wall

temperatures higher than the experimental values with

the modified Hess and Kunz values being more conser-
vative.

Heat-Transfer Coefficients in Rocket Nozzle

Cooling Passages

Regeneratively cooled rocket nozzles are made up

of noncircular passages formed to give the desired area
ratios, and are essentially combinations of straight and

curved tubes. The success demonstrated in predicting

heat transfer coefficients in straight with tubes using

equation (1) and curved tubes using equations (4) and (5)

encourages the use of these equations in predicting heat

transfer coefficients in the coolant passages of a rocket

nozzle.

To predict the heat transfer coefficients in the cool-

ing passage of a nozzle, the following equations are rec-
ommended:

Entrance of Coolant Passage

Straight entrance x/D > 1

,,
45 ° and 90 ° an_le bend entrance x/D > 5

NUb = 0.023 Reb'8- '% .

where E 1 = 3.5 for the 45 ° angle bend and 5 for the 90 °
angle bend entrance. (18) F1 differs from the value

given (18) by 1.4 (the value for F 1 for a straight en-

trance and which is included in the exponent of Tw/Tb).

Throat Section (Concave Curvature)

NUb = 0. 023 Reb" 8pr0" 4 fTw_e -(0. 1.59_b 57-x-7 /
r ¥ "2]0"05

× [Reb (_) ] (4)

Exit Section (Convex Curvature)

o. ¢-¢o_(o.b/
- r 2"]-0.05

Any Straight Sections
T

At present it is not known how far the effects of cur-
vature on the heat-transfer coefficient will extend down-

stream of the point of tangency where a curved tube be-

comes straight. It is reasonable to assume that the el-

fect of curvature would diminish with x/D rather than

change abruptly at the point of tangency. The curvature

effect appears to be present at the last instrumented sta-
tion showndn Fig. 6(b) which is 2 diameters downstream

of the tangency point.

Equations (1), (4), (5), and (6) are the best available

for the prediction of heat-transfer coefficients in the

cooling passages of-hydrogen cooled rocket nozzlesl The

useof equations (1), (4), (5), and (6) should allow the

design of more efficiently and reliably cooled rocket.
nozzles.

Cp specific heat of gas at constant pressure

D inside diameter of test section

G mass flow rate per unit cross-sectional area

h local heat-transfer coefficient

k thermal conductivity of gas

Nu Nusselt number, hD/k

Pr Prandtl number, Cp_/k

p absolute static pressure

q rate of heat transfer to gas per trait area

R radius of curvature

Re b bulk Reynolds number, GD/#b

Ref modified film Reynolds number, pfVbD/#f

r inside radius of passage

T temperature

T* transposed critical temperature (temperature at

which specific heat of fluid at constant pressure

reaches a maximum)

velocity

distance from entrance of test section

absolute viscosity of gas

kinematic viscosity of gas, _/p

density of gas

Subscripts:

b bulk (when applied to properties, indicatesevalu-

ationat bulk temperature Tb)

e critical

v

x

p

P



f film (when applied to properties indicates evaluation

at film temperature Tf)

i inlet

w wall

References

1. Taylor, M. F., "Correlation of Local Heat-

Transfer Coefficients for Single-Phase Turbulent

Flow of Hydrogen in Tubes with Temperature

Ratios to 23," TN D-4332, 1968, National Aero-

nautics and Space Administration, Cleveland, Ohio.

2. Thompson, W. R. and Geery, E. L., "Heat Trans-

fer to Cryogenic Hydrogen at Supercritical Pres-

sures,,, Rep. No. 1842 (AFFTC-TR-61-52, DDC

No. AD-263465), July 1960, Aerojet-General

Corp., Azusa, Calif.

3. McCarthy, J. R. and Wolf, H., "The Heat Trans-

fer Characteristics of Gaseous Hydrogen and He-

lium, " Res. Rep. 60-12, Dec. 1960, Rocketdyne

Div., North American Aviation, Inc., Canoga

Park, Calif.

4. Weiland, W. F., Jr., "Measurement of Local Heat

Transfer Coefficients for Flow of Hydrogen and

Helium in a Smooth Tube High Surface-to-Fluid

Bulk Temperature Ratios," Chemical Engineering

progress Symposium Series, Vol. 61, No. 60,

1965, pp. 97-105.

5. Taylor, M. F., "Experimental Local Heat-Transfer

and Average Friction Data for Hydrogen and Hell-

urn Flowing in a Tube at Surface Temperatures up

to 5600 ° R," TN D-2280, 1964, National Aero-

nautics and Space Administration, Cleveland, Ohio;

see also Proceedings of the 1963 Heat Transfer and

Fluid Mechanics Institute, A. Roshko, B.

Sturtevant and D. R. Bartz, eds., Stanford Uni-

versity press, 1963, pp. 251-271.

6. Taylor, M. F., "Experimental Local Heat-Transfer

Data for l>recooled Hydrogen and Helium at Surface

Temperatures up to 5300 ° R, " TN D-2595, 1964,

National Aeronautics and Space Administration,

Cleveland, Ohio.

7. Hendricks, R. C., Simoneau, R. J., and Friedman,

R, "Heat-Transfer Characteristics of Cryogenic

Hydrogen from 1000 to 2500 psia Flowing Upward

in Uniformly Heated Straight Tubes," TN D-2977,

1965, National Aeronautics and Space Administra-

tion, Cleveland, Ohio.

8. Miller, W. S., Seader, J. D., and Trebes, D. M.,

"Supercritical Pressure Liquid Hydrogen Heat

Transfer Data Compilation, " Rep. No. R-6129,

Apr. 1965, Rocketdyne Div., North American

Aviation, Inc., Canoga Park, Calif.

9. Hendricks, R. C., Graham, R. W., Hsu, Y. Y.,

and Friedman, R., "Experimental Heat-Transfer

Results for Cryogenic Hydrogen Flowing in Tubes

at Subcritical and Supercritical Pressures to 800

Pounds Per Square Inch Absolute," TN D-3095,

1966, National Aeronautics and Space Administra-

tion, Cleveland, Ohio.

10. Anon., "Heat Transfer to Cryogenic Hydrogen

Flowing Turbulently in Straight and Curved Tubes

at High Heat Fluxes, " NASA CR-678, Feb. 1967,

Aerojet-General Corp.

11. Gladden, H. J. and Watt, J. J., Unpublished Data,

NASA Lewis Research Center.

12. Hess," H. L. and Kunz, H. R., "A Study of Forced

Convection Heat Transfer to Supercritical Hydro-

gen," Journal of Heat Transfer, Vol. 87, No. 1,

Feb. 1965, pp. 41-48.

13. Anon., "Design Equation Analysis for Heat Transfer

to Cryogenic Hydrogen at Pressures from 600 to

1500 psia and Wall-to-Bulk Temperature Ratios to

20°" Rep. No. RN-S-0274, Apr. 1966, Aerojet-

General Corp.

14. Anon., "An Experimental Investigation of

the Heat to Hydrogen at Near Critical Tempera-

tures and Supercritical Pressures Flowing Tur-

bulently in Straight and Curved Tubes," Rep. No.

2551, May 1963, Aerojet-General Corp., Azusa,

Calif.

15. Hendricks, R. C. and Simon, F. F., "Heat Trans-

fer to Hydrogen at Near Critical Temperatures and

Supercritical Pressures Flowing in a Curve Tube,"

Proceedings, Multi-Phase Flow Symposium,

H. J. Lipstein, ed., ASME, 1963, p. 90.

16. Miller, W. S., "Heat Transfer to Hydrogen Flowing

Turbulently in Tubes," Paper No. 66-580, June

1966, AIAA, New York, N. Y.

17. ItS, H., "Friction Factors for Turbulent Flow in

Curved Pipes," Journal of Basic Engineering,

Vol. 81, No. 2, June 1959, pp. 123-134.

18. Boelter, L. M. K., Young G., and Iverson, H. W.,

"An Investigation of Aircraft Heaters - XXVII.

Distribution of Heat Transfer Rate in the Entrance

Section of a Circular Tube," TN 1451, 1948,

National Advisory Committee for Aeronautics,

Washington, D. C.

x/D
Tw/T b

Ti, OR
p_, psia

q_, Btu/(sec)(in. 2)

R%
TW, OR

2.O 252

1.1 27.6

4.5 573

18 250O

0.036 27.6

7500 13 800 000

53 560O

TABLE I. - RANGE OF EXPERIMEN-

TAL CONDITIONS
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Figure 1. - Rangeof hydrogen inlet temperature and inlet pres-
sure for which equation (1) has been experimentally checked.



1.5 F +20 percent-,

1.0 _'2,_

(_ _ - "'- -20 percent.5 I 1 I I
(a) h Calculated using equation (1) (Ref. 1).

I

r_

2. 0 F

_- 1.5 0

0 percent_
= ,,

Oq b "-

-_ -

, ,.- -_0 percent-_ 5 I

(b) h Calculated using equation (2)(Ref. 12).

1.5

1.0

- o_

.5 I I I I
5 10 15 20 25

TwITb

0

O0

+20 percent-'

'- -20 percent

(c) h Calculated using equation (3)(Refs.
and 13).

10

Figure 2. - Variation of the ratio of calculated
to measured heat transfer coefficients with

temperature ratio. Straight tube data from
reference 10, x/D from 6.7 to 33.9. heat
flux from 6.4 to 27.6 Btu/(sec)(in. 2").
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to measured heat transfer coefficients with

temperature ratio. Curved tube data from
reference 14, symmetric heating.
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